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ABSTRACT
Thermal spreading resistance is an important phenomenon

in contacting bodies and local heating e.g. laser heating. In con-
tacting bodies, the real area of contact is typically less than 2%
of the nominal contact area. In practice, due to random nature
of contacting surfaces, the actual shape of microcontacts is un-
known; therefore, it is advantageous to have a model applicable
to any arbitrary-shape heat source. Starting from a half-space
representation of the heat transfer problem, a compact model is
proposed based on the generalization of the analytical solution of
the spreading resistance of an elliptical source on a half-space.
Using a "bottom-up" approach, uni�ed relations are found that
allow accurate calculation of spreading resistance over a wide
variety of heat source shapes under both iso�ux and isothermal
conditions.

NOMENCLATURE
A = area, m2
a = major semi-axis, m
B(�) = beta function
b = minor semi-axis, m
K(�) = complete elliptic integral of the �rst kind

, Eq.(4)
k = thermal conductivity,W=mK
L = characteristic length scale, m
N = number of sides of a regular polygon
n = geometric parameter for hyperellipse
Q = heat �ow rate,W
q = heat �ux,W=m2
R = thermal spreading resistance, K=W

�PhD Candidate. Corresponding author. E-mail: ehsans@uvic.ca.
�Assistant Professor and Mem. ASME
�Professor

�
R = average temperature based thermal spreading

resistance, K=W
R0 = centroidal temperature based thermal spreading

resistance, K=W
R� = non-dimensional spreading resistance
RT = thermal spreading resistance, isothermal source, K=W
r = radius, m
�
T = average temperature, K
T0 = centroidal temperature, K
Greek
α = angle, rad
β = length ratio, b=a
Γ(:) = gamma function
ε = aspect ratio, [�]
η = length, xc=r
ρ = distance in polar coordinate, m
ω = angle, rad
Subscripts
c = geometrical center of area

1 INTRODUCTION
Spreading resistance, also sometimes referred to as constric-

tion resistance, is commonly encountered in thermal engineering
whenever a concentrated heat source is in contact with a larger
heat conducting surface. This phenomenon extends also to elec-
tric current and mass transfer problems. In this study we focus
on thermal spreading resistance which often appears as a bot-
tleneck in heat management, and is of relevance in applications
such as integrated circuits and laser heating. In contacting bod-
ies, real interaction between two surfaces occurs only over mi-
croscopic contacts [1, 2]. The actual area of contact, i.e. the
total area of all microcontacts, is typically less than 2% of the
nominal contact area [1, 2]. Thus, heat �ow is constricted and
then spreads to pass from the contact area to contacting bod-
ies. Thermal spreading resistance plays a vital role in the de-
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sign of numerous thermal, electrical, and electronic devices and
systems. Electronic equipment, aircraft structural joints, surface
thermocouples, boundary lubrication, nuclear reactors, biomed-
ical industries, and cryogenic liquid storage devices are only a
few examples of such systems [3�7].

Assuming dimensions of microcontacts and/or heat sources
are small compared with the distance separating them and with
the dimensions of the body which heat spreads through, the heat
source on a half-space hypothesis can be used [8]. As the mi-
crocontacts or heat sources increase in number and grow in size,
a �ux tube problem should be considered to account for the in-
terference between neighboring microcontacts/heat sources. For
an in-depth review of �ux tube solutions for spreading resistance
see [4, 9�15].

Several researchers including Kennedy [6], Ellison [16],
Karmalkar et al. [17], and Pawlik [18] focused on analyzing ther-
mal spreading resistance in electronic devices.

Yovanovich and his co-workers [19�22] investigated a range
of steady-state and transient thermal spreading resistance. They
proposed thermomechanical models for contact, gap and joint
resistances of joints formed by conforming rough surfaces, non-
conforming smooth surfaces, and nonconforming rough surfaces
[7]. Applying superposition techniques, Yovanovich developed
a method to evaluate spreading resistance of different shapes on
a half-space and derived found relationships for geometries in-
cluding singly and doubly connected heat sources such as: hy-
perellipse, semicircle, triangle, polygon, and annulus. They also
introduced the use of the square root of the source area

p
A to

non-dimensionalize spreading resistance.
Analytical, experimental, and numerical models have been

developed to predict thermal spreading resistance since the 1930
s. Several hundred papers on thermal spreading resistance have
been published which illustrates the importance of this topic.

In practice, due to the random nature of contacting surfaces,
the actual shape of microcontacts is unknown; therefore, it would
be bene�cial to have a model applicable to any arbitrary-shape
heat source. In spite of the rich body of literature on spreading
resistance, there is yet no general model which can accurately es-
timate the spreading resistance of an arbitrary- shape heat source
on a half-space, due to the challenge of dealing with complex
irregular geometries.

In this study, a compact model is proposed based on the ana-
lytical solution of the spreading resistance of an elliptical source
on a half-space. Using a "bottom-up" approach, it is shown that
for a broad variety of heat source shapes, the proposed model is
in agreement with the existing and/or developed analytical solu-
tions.

2 PROBLEM STATEMENT
Consider steady-state heat transfer from an arbitrary- shape

planar singly connected heat source on a half-space, Fig.1. The
temperature �eld within the half-space must satisfy Laplace's
equation, ∇2T = 0.

Thermal spreading resistance R is de�ned as the difference
between the temperature of heat source and the temperature of a
heat sink far from it divided by the total heat �ow rate through
the contact area Q; i.e. R = ∆T=Q [23]. For convenience, the

heat source

Tsink

Q

half­space

heat sink

isotherms

flow lines

arbitrary­shape
heat source
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plan view

Figure 1. ARBITRARY-SHAPE HEAT SOURCE ON A HALF-SPACE.

temperature far from the contact area may be assumed to be zero
with no loss of generality.

To investigate the trend of different shapes and aspect ratios,
it is more convenient to non-dimensionalize spreading resistance
in the form of R� = k L R, where k, L , and R are the thermal
conductivity of half-space, a characteristic length scale, and the
spreading resistance, respectively [20]. Parameters required to
de�ne spreading resistance are: reference temperature, charac-
teristic length scale, and boundary condition, see Fig. 2. The
reference temperature can be the centroid or average tempera-
ture of the source. According to Yovanovich [20], spreading re-
sistance values for hyperelliptical sources vary over a narrower
bond when based on the centroidal temperature rather than when
based on the average temperature. As is shown later, there is a
relationship between the average and the centroid based resis-
tances; for convenience, the average temperature is used as the
reference temperature. After examining several possible length
scales, we concluded that the square root of the square area

p
A

is the best choice of characteristic length scale, as Yovanovich
proposed [20]. The next parameter is boundary condition; two
boundary conditions are considered: isothermal and iso�ux. The
iso�ux boundary condition is easier to apply and solve for. Fur-
thermore, a relationship between these boundary conditions can
be established.

spreading
resistance

reference temperature

(average, centroid)

boundary condition
(isoflux, isothermal)

characteristic length

(                      )hDPaA ,,,

Figure 2. PARAMETERS INVOLVED IN SPREADING RESISTANCE
SOLUTION.

2 Copyright c
 2008 by ASME



3 CHARACTERISTIC LENGTH SCALE
To non-dimensionalize the spreading resistance, a charac-

teristic length scale is required. Different characteristic length
scales are examined in this section. These include perimeter P,
hydraulic diameter (Dh = 4A=P), an arbitrarily chosen dimen-
sion a, and the square root of the source area

p
A.

An analytical solution exists for hyperellipse shapes in the
literature [20]. To compare different characteristic length scales,
a hyperellipse source covering a wide variety of geometries is
selected. A hyperellipse, in the �rst quadrant, is described by:

y= b[1� ( x
a
)n]1=n (1)

where a and b are characteristic dimensions along the x and y
axes, respectively, see Fig. 3. The effect of parameter n on the
shape of the hyperellipse source is also shown in Fig. 3. When
n = 1, the hyperellipse yields a rhombic source (a > b), or a
square (a = b); for n = 2, the source is elliptical (a > b), or
circular (a = b); n > 3, yields a rectangle (a > b) or a square
(a = b) source with rounded corners; and for n! ∞, the shape
approaches a full rectangle/square source [20].

Figure 3. HYPERELLIPSE HEAT SOURCE IN THE FIRST QUADRANT.

Yovanovich [20] calculated the spreading resistance for hy-
perelliptical sources. For instance, the non-dimensional spread-
ing resistance with

p
A as the characteristic length scale is [20]:

k
p
AR0 =

1
π

s
ε n

B( n+1n ;n)

Z π=2

0

dω
[sinn ω+ εn cosn ω]1=n

(2)

where B(�) is the beta function.
The analytic non-dimensional spreading resistances R� ob-

tained using four different characteristic length scales are com-
pared in Fig. 4 (a)-(d)for both rectangular and elliptical sources.

Comparing the trends for the different characteristic length
scales, it can be concluded that the square root of area

p
A is the

superior choice for characteristic length scale. With this choice,
the maximum difference between the analytical solutions of el-
liptical and rectangular sources is less than 6:8%; and in fact for
ε> 0:4, the difference is less than 1:5%. Since elliptical and rec-
tangular sources, corresponding to Eq. (1) with n= 2 and n!∞,
cover a wide range of shapes, it can be concluded that usingp
A as a characteristic length scale, non-dimensional spreading

resistance of a hyperellipse with any value of 2 < n < ∞ dif-
fer less than 6:8% with respect to an elliptical source. This im-
plies that the effect of corners on the spreading resistance is not
signi�cant for hyperelliptical shapes with identical areas and as-
pect ratios. Since a hyperellipse covers a wide variety of shapes,
the square root of area

p
A is the most appropriate characteristic

length scale for any arbitrary-shape heat source on a half-space,
as Yovanovich suggested [20].

4 PROPOSED MODEL
As shown previously, non-dimensional spreading resis-

tances of hyperelliptical sources with equal areas and aspect ra-
tios are close for any value of 2 � n � ∞. Thus, if we select
one of these shapes in the model, the spreading resistance of the
others can be predicted with good accuracy. The premise of the
present model is that the solution for hyperelliptical source can
be applied to estimate the spreading resistance of any shape of
heat sources when the area and aspect ratio are the same as those
of the hyperelliptical source. Since, the analytical solution of the
elliptical source (n = 2) is more convenient, it is chosen as the
basis of the model. According to the present model, an arbitrary-
shape heat source is transformed to an elliptical shape where area
and aspect ratio are maintained constant, see Fig. 5. The analyt-
ical solution for the spreading resistance of an iso�ux elliptical
source on a half-space can be expressed using the general solu-
tion proposed by Yovanovich for a hyperellipse [19]:

k
p
AR0 =

2
π
p

π
K(1� 1

ε2 )p
ε

(3)

where, K(�) is the complete elliptic integral of the �rst kind de-
�ned as:

K(1� 1
ε2
) =

π=2Z
0

dts�
1� (1� 1

ε2
)sin2 t

� (4)

We propose a de�nition of the aspect ratio which, though not
general, is appropriate for most of shapes:

ε= 1=
�
maximum length o f the shape in arbitrary direction x
maximum length in the prependicular direction to x

�
(5)
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Figure 4. NON-DIMENSIONAL SPREADING RESISTANCE OF RECTANGULAR AND ELLIPTICAL SOURCESWITH THE CHARACTERISTIC LENGTH
SCALES: (a) PERIMETER; (b) HYDRAULIC DIAMETER; (c) MAJOR SEMI-AXES; (d) SQUARE ROOT OF AREA.
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bA =ε,
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Figure 5. GEOMETRICAL TRANSFORMATION OF ANY ARBITRARY-
SHAPE HEAT SOURCE TO ELLIPTICAL SOURCE.

5 COMPARISON WITH ANALYTICAL SOLUTIONS
Using the superposition and integral methods proposed by

Yovanovich [19], we �nd analytical solutions for spreading resis-

tance of trapezoidal, rhombic, circular sector, circular segment,
and rectangular source with semicircular or round ends as re-
ported in the proceeding sections. In this section, the proposed
model is compared with available and developed analytical solu-
tions for a wide variety of iso�ux heat sources on a half-space.

5.1 POLYGONAL SOURCE
The analytical solution for a regular polygonal source with

N sides can be written as [19]:

k
p
AR0 =

1
π

s
N

tan (π=N)
ln
1+ sin(π=N)
cos(π=N)

(6)

Figure 6 shows the effect of number of sides N on the non-
dimensional spreading resistance. There is not much difference
between the different polygons, and for N � 6 the results are
essentially the same. Also, the results are compared with the
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model for ε= 1; the maximum difference between the analytical
solution of polygonal sources and the model is less than 2:2%.

N

R
*
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k
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R
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N R*
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100 0.5642
. .
. .
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∞
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Figure 6. COMPARISON OF POLYGONAL HEAT SOURCE WITH THE
MODEL.

5.2 TRIANGULAR SOURCE
The analytical solution for an isosceles triangular iso�ux

source developed by Yovanovich [19] is given by:

k
p
AR0 =

p
2β
3π

h
ln[tan (

π
4
+

ω1
2
)]+2sin(cot�1 2β) �

ln[tan (
π
4
+

ω2
2
) tan (

π
4
+

ω3
2
)]
i
(7)

where, ω1 = tan�1(3=2β), ω2 = π=2�cot�1(2β), ω3 = π�ω1�
ω2 , and β= b=a.

Choosing a proper aspect ratio is important. The aspect ratio
for an equilateral triangle is unity; hence, the aspect ratio that
also satis�es the equilateral case is ε= β(2=

p
3). The spreading

resistance for isosceles triangular source is compared with the
model in Fig. 7. Results show good agreement with the model
and maximum error is less than 2:2% when ε> 0:1.

5.3 RHOMBIC SOURCE
A rhombus is a special case of hyperellipse with n= 1. The

spreading resistance for this shape can be evaluated from Eq. (2).
A simpler method to calculate it, would be using the superposi-
tion technique. The non-dimensional spreading resistance for a
rhombic source can be written as:

k
p
AR0 =

p
2sin(ω1)

π
p

ε
ln[tan (

π
4
+

ω1
2
) tan (

π
4
+

ω2
2
)] (8)

ε
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Figure 7. COMPARISON OF ISOSCELES TRIANGULAR HEAT
SOURCE WITH THE MODEL.

where, ω1 = tan�1 ε, ω2 = π=2�ω1, A= 2ab , and ε= b=a.

ε
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R
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Figure 8. COMPARISON OF RHOMBIC HET SOURCE WITH THE
MODEL.

Figure 8 compares the rhombic heat source solution and the
model, Eq.(3); except for small value of aspect ratio, 0 < ε <
0:25, the results agree with the model within 1:7%. The agree-
ment for the lower aspect ratios is within 10%.

5.4 TRAPEZOIDAL SOURCE
The trapezoidal cross-section is an important geometry

which in the limit when the top side length goes to zero, yields an
isosceles triangle. At the other limit when top and bottom sides
are equal, it becomes a rectangle/square.

The spreading resistance for a trapezoidal source is found
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using superposition technique. The relationship for a trapezoidal
source is unwieldy, and is therefore given in the appendix. The
comparison of the results with the model for various trapezoidal
sources is shown in Fig. 9; again there is good overall agreement
with the model and the difference is less than 4% when ε> 0:1.

ε

R
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k
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Isoflux Trapezoidal Heat Source on a Half Space

h
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ε =h/(a+b)
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α α

Figure 9. COMPARISON OF DIFFERENT TRAPEZOILDAL HEAT
SOURCES WITH THE MODEL.

5.5 RECTANGULAR SOURCE WITH ROUND ENDS
Rectangular heat source with round ends is a combination

of triangular and circular sector sources. Using superposition
technique, the exact solution for this source is:

k
p
AR0 =

p
2

π

β ln[tan (
π
4
+

ω1
2
)]+

q
1+β2 tan�1βq

(1+β2) tan�1β+β
(9)

where, ω1 = tan�1β, A= 2a2[(1+β2) tan�1β+β], β= b=a, and

ε= β=
q
1+β2.

Figure 10 shows the analytical solution compared with the
model. It can be seen that the model can estimate the spreading
resistance of this shapes with the maximum error of 2% where
ε> 0:2 .

5.6 RECTANGULAR SOURCE WITH SEMICIRCULAR
ENDS
Rectangular heat source with semicircular ends is a combi-

nation of triangular and circular segment sources. Using super-
position technique, the exact solution for this source is:

ε

R
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k
√ A

R
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Figure 10. COMPARISON OF �RECTANGULAR HEAT SOURCE WITH
ROUND ENDS� WITH THE MODEL.

k
p
AR0=

2
π

β ln[tan (
π
4
+

ω1
2
)]+

Z ω1

0
(cosω+

q
β2� sin2ω) dωq

4β+πβ2

(10)
where, ω1 = tan�1β, A= a2[4β+πβ2], β= b=a, and ε= β=(1+
β). It can be seen that the model can predict the spreading re-
sistance for this shape with the maximum error of 2% where
ε> 0:27.
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Figure 11. COMPARISON OF �RECTANGULAR HEAT SOURCE WITH
SEMICIRCULAR ENDS� WITH THE MODEL.
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5.7 CIRCULAR SECTOR SOURCE
Circular sector is composed of triangular and non-circular

sector sources with the common vertex at the centroid. Using
superposition, the exact solution can be written as:

k
p
AR0 =

1
π
p

α

h
ηsinα ln[tan (

π
4
+

ω1
2
) tan (

π
4
+

ω2
2
)]

+
Z ω3

0
(

q
1�η2 sin2ω�ηcosω) dω

�
(11)

where, η = xc=r = 2sinα=3α, ω1 = π=2 � α, ω2 =
tan�1 [(1�ηcosα)=(xc sinα)], ω3 = π�ω1�ω2. The aspect
ratio is de�ned as the ratio of maximum lengths in y and x direc-
tions, i.e. ε= 2r sinα=r = 2sinα.

ε
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Figure 12. COMPARISON OF CIRCULAR SECTOR HEAT SOURCE
WITH THE MODEL.

The relationship developed for the circular sector source is
compared with the model in Fig. 12. It can be observed that for
small values of aspect ratios, the error is more than 5%, but for
ε> 0:27 the error becomes less than 5%.

5.8 CIRCULAR SEGMENT SOURCE
Circular segment is composed of triangular and non-circular

sector sources with the common vertex at the centroid. Using
superposition, the exact solution can be expressed as:

k
p
AR0 =

1

π
r

α� sin2α
2

h
(η� cosα) ln[tan (π

4
+

ω1
2
)]

+
Z ω2

0
(

q
1�η2 sin2ω�ηcosω) dω

�
(12)

where, xc =
(r=3)(2sinα� cosα sin2α

α� sin(2α)=2 , η = xc=r, ω1 =

tan�1 [sinα=(η� cosα)], and ω2 = π�ω1. The aspect ratio is
de�ned as the ratio of maximum lengths in y and x directions.
For different value of α, the aspect ratio becomes:

ε=

8>><>>:
1� cosα
2sinα

α� π
2

1� cosα
2

π
2
� α� π

(13)

The exact solution of the circular segment source is com-
pared with the model in Fig. 13. The results show good agree-
ments with the model over the entire range of aspect ratio.
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Figure 13. COMPARISON OF CIRCULAR SEGMENT HEAT SOURCE
WITH THE MODEL.

The examined geometries of a heat source on a half-space
are compared with the model in Table 1 and Fig. 14. The def-
inition of aspect ratio, proper criteria to use the model, and the
maximum relative error with respect to the model is reported in
Table 1. The maximum error occurs in small values of aspect
ratio, ε � 0:01; if aspect ratio is greater than 0:1 the error de-
creases sharply. As seen in Table 1 and Fig. 14, the model shows
good agreement with the analytical solutions for wide variety of
shapes, specially when ε> 0:1.

6 REFERENCE TEMPERATURE
Having established the accuracy of the proposed model pro-

vides for the centroidal temperature based spreading resistance
of any arbitrary-shape iso�ux heat source on a half-space, we
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Table 1. COMPARISON AND ACCURACY OF PROPOSED SPREADING RESISTANCE MODEL FOR VARIOUS GEOMETRIES.

cross-section ε notes max error

a

b
b
a

maximum difference of 2% for ε> 0:3
6:8%

a

b
b
a

base model
�

N
π2

1
very close agreement with the model

specially for N > 6
2:2%

2a

2b
2β[1]p
3

maximum difference of 2:2% for ε> 0:1
4:8%

a

b
b
a

maximum difference of 1:7% for ε> 0:25
11%

a

b
h h

a+b
2:6%< difference < 4% for ε> 0:1

6:8%

a

r
b βq

1+β2
maximum difference of 2% for ε> 0:2

6:8%

a

b
b

β
1+β

maximum difference of 2% for ε> 0:27
6:8%

α
r

xc

2sinα
maximum difference of 5% ε> 0:27

10:8%

α

r

xc

1� cosα
2sinα :α� π

2
1� cosα

2 :
π
2
� α

maximum difference of 2% for ε> 0:13
4:6%

[1]β= b=a

turn our attention to developing a relationship between the cen-
troid temperature and average temperature based spreading resis-
tances. The latter is a commonly used reference and can also be
applied to doubly-connected regions.

There is no analytical solution for the isothermal elliptical
source in the literature, therefore, this problem was solved nu-
merically in the present study. The results show that the ratio of
non-dimensional spreading resistances based on the average and
centroid temperatures for elliptical source varies only between
0:8485 and 0:8491, therefore, it remains approximately constant

with and average value

k
p
A
�
R

k
p
AR0

=

�
R
R0
�= 0:849 (14)

The non-dimensional spreading resistance based on the av-
erage temperature for elliptical and rectangular sources is shown
in Fig. 15. The predicted resistances are indeed very close. Since
the ellipse and rectangle are the lower and the upper bounds for
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Figure 14. COMPARISON OF ARBITRARY-SHAPE HEAT SOURCES
WITH THE MODEL.

the hyperellipse within 2 � n � ∞, it can be concluded that the
elliptical source result for non-dimensional spreading resistance
based on the average temperature can be used for hyperelliptical
source within 2 � n � ∞. Also, Eq. (14) provides an excellent

estimate of the ratio
�
R=R0.
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Figure 15. COMPARISON OF AVERAGE TEMPERATURE BASED
SPREADING RESISTANCES FOR ELLIPTICAL AND RECTANGULAR
HEAT SOURCES.

Since the model provides a good estimate for centroidal tem-
perature based spreading resistance, and Eq. (14) is approxi-
mately valid for hyperelliptical shapes covering a wide variety of
geometries, Eq. (14) can be used with con�dence to predict the
ratio of spreading resistance based on the average and centroid
temperatures for a broad variety of heat source shapes. Thus,
combining Eq. (3) and Eq. (14), the model for the average tem-

perature based spreading resistance reads:

k
p
A
�
R=

1:6974
π
p

π

K(1� 1
ε2
)

p
ε

(15)

7 BOUNDARY CONDITION
We have so far considered spreading resistance for any

iso�ux arbitrary-shape heat source on a half-space. Yovanovich
[22] developed an analytical solution for an isothermal elliptical
source.

k
p
ART =

p
ε

2
p

π
K(1� ε2) (16)

Schneider [24] numerically solved Laplace's equation for
the rectangular source and reported a correlation in the form of:

k
p
ART =

1p
ε

�
0:06588� 0:00232

ε
+

0:6786
(1=ε)+0:8145

�
: 0:25� ε� 1

(17)
A comparison between the solutions of isothermal rectan-

gular and elliptical sources indicates a maximum difference of
1:27% which occurs at ε= 1, while the solutions are essentially
identical for an aspect ratio ε less than 0:4. Since the iso�ux ellip-
tical source which is proposed as the model predicts accurately
spreading resistance of any iso�ux arbitrary-shape heat source,
this suggests that the solution for isothermal elliptical source can
be used for a wide variety of isothermal heat sources. Thus, the
general form of the model for any arbitrary-shape heat source on
a half-space can be expressed as:

k
p
AR=

8>>>><>>>>:
1:6974
π
p

π

K(1� 1
ε2
)

p
ε

iso�ux (average temp.)

p
ε

2
p

πK(1� ε2) isothermal

(18)

Figure 16 presents the spreading resistance for isothermal
and iso�ux boundary conditions calculated using Eq. (18).
The ratio of isothermal to iso�ux spreading resistance does not
change much and remains approximately constant at 0:925 with
Risothermal = Riso f lux u 0:925�0:0005. In practice, the boundary
condition is a combination of iso�ux and isothermal conditions
and these provide two bounds for actual thermal spreading resis-
tances.

8 SUMMARY AND CONCLUSIONS
Thermal spreading resistance is an important major phenom-

enon in thermal engineering problems, whenever temperature
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Figure 16. PROPOSED MODEL FOR ISOTHERMAL AND ISOFLUX
BOUNDARY CONDITIONS.

and cross-sectional area variations exist. In this study, a model
based on the generalization of the analytical solution of iso�ux
elliptical source has been proposed, and analytic solutions were
obtained for a variety of complex shapes. The generalized model
presented here provides a uni�ed approach for calculating the
spreading resistance for a large variety of geometries, and un-
der both iso�ux and isothermal conditions. The highlights of the
model and results are:

1. The most appropriate characteristic length scale for non-
dimensional spreading resistance is square root of area

p
A.

2. The spreading resistance for arbitrarily singly connected
shapes agrees with the proposed model.

3. The ratio of isothermal to iso�ux spreading resistance is ap-
proximately 0:931 for a wide range of shapes for different
aspect ratios.
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APPENDIX: ISOSCELES TRAPEZOIDAL SOURCE
The spreading resistance for an isosceles trapezoidal source

is found using superposition technique. Considering the parame-
ters shown in Fig. 17, the non-dimensional spreading resistance
based on the centroidal temperature is expressed as:

k
p
AR0 =

1
π
OI (Ω2+Ω3)+ OH Ω1+ OK Ω4p

A
(19)

where, Ωi= ln[tan (
π
4
+

ωi
2
)]. For θ > 90, Ω2 and ω2 must be

replaced by �Ω2 and �ω2, respectively.
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Figure 17. CROSS SECTION OF AN ISOSCELES TRAPEZOIDAL
HEAT SOURCE.
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